An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.

نویسندگان

  • Xiaojing Wei
  • Jessica A Savage
  • Charlotte E Riggs
  • Jeannine Cavender-Bares
چکیده

Environmental filtering is an important community assembly process influencing species distributions. Contrasting species abundance patterns along environmental gradients are commonly used to provide evidence for environmental filtering. However, the same abundance patterns may result from alternative or concurrent assembly processes. Experimental tests are an important means to decipher whether species fitness varies with environment, in the absence of dispersal constraints and biotic interactions, and to draw conclusions about the importance of environmental filtering in community assembly. We performed an experimental test of environmental filtering in 14 closely related willow and poplar species (family Salicaceae) by transplanting cuttings of each species into 40 common gardens established along a natural hydrologic gradient in the field, where competition was minimized and herbivory was controlled. We analyzed species fitness responses to the hydrologic environment based on cumulative growth and survival over two years using aster fitness models. We also examined variation in nine drought and flooding tolerance traits expected to contribute to performance based on a priori understanding of plant function in relation to water availability and stress. We found substantial evidence that environmental filtering along the hydrologic gradient played a critical role in determining species distributions. Fitness variation of each species in the field experiment was used to model their water table depth optima. These optima predicted 68% of the variation in species realized hydrologic niches based on peak abundance in naturally assembled communities in the surrounding region. Multiple traits associated with water transport efficiency and water stress tolerance were correlated with species hydrologic niches, but they did not necessarily covary with each other. As a consequence, species occupying similar hydrologic niches had different combinations of trait values. Moreover, individual traits were less phylogenetically conserved than species hydrologic niches and integrated water stress tolerance as determined by multiple traits. We conclude that differential fitness among species along the hydrologic gradient was the consequence of multiple traits associated with water transport and water stress tolerance, expressed in different combinations by different species. Varying environmental tolerance, in turn, played a critical role in driving niche segregation among close relatives along the hydrologic gradient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Habitat specialization and the role of trait lability in structuring diverse willow (genus Salix) communities

The co-occurrence of closely related species is challenging to explain because biotic filters are expected to limit the ecological similarity of species within communities. To investigate the mechanisms important in facilitating species’ co-occurrence in diverse willow and poplar communities, we examined functional diversity and community phylogenetic structure along a hydrologic gradient. We f...

متن کامل

Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient.

Influences of soil environment and willow host species on ectomycorrhizal fungi communities was studied across an hydrologic gradient in temperate North America. Soil moisture, organic matter and pH strongly predicted changes in fungal community composition. In contrast, increased fungal richness strongly correlated with higher plant-available phosphorus. The 93 willow trees sampled for ectomyc...

متن کامل

Surface water and ground - water thresholds for maintaining Populus – Salix forests , San Pedro River , Arizona

Ground-water and surface Xow depletions are altering riparian ecosystems throughout the southwestern United States, and have contributed to the decline of forests of the pioneer trees Populus fremontii (Fremont cottonwood) and Salix gooddingii (Goodding willow). On some rivers, these forests have been replaced by shrublands of Tamarix ramosissima (tamarisk), a drought-tolerant species from Eura...

متن کامل

Phenological cues drive an apparent trade-off between freezing tolerance and growth in the family Salicaceae.

With increasing concern about the ecological consequences of global climate change, there has been renewed interest in understanding the processes that determine species range limits. We tested a long-hypothesized trade-off between freezing tolerance and growth rate that is often used to explain species range limits. We grew 24 willow and poplar species (family Salicaceae) collected from across...

متن کامل

Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral “Salicoid” Genome Duplication

Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 98 5  شماره 

صفحات  -

تاریخ انتشار 2017